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Performance of MingleNet on the benchmarks

Kvasir-SEG dataset

Abstract

Medical image segmentation is important for disease diagnosis and treatment planning.
Ensemble learning, which combines multiple models or predictions, can improve accuracy
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and performance in medical image segmentation. We propose MingleNet, which uses U e A 97.64%y
multiple layers of ensemble learning. MingleNet uses double-stacking of models, such as DeepLabva+ (Layer 1) oL86%  8494%  9376%  90.03%  97.48%
DoubleU-Net, DeepLabv3+, U-Net, and DeeplLab, to produce masks. The first layer’s U-Net (Layer 2) T u—
masks are averaged and concatenated with the original images for the second layer. We DeepLab (Layer 2) 02.60%  8637%  9512%  9037%  97.74%
also apply dynamic data augmentation to enhance model performances. MingleNet’s Final Output 93.19%  87.24%  OA15%  9225%  97.87%
We evaluate MingleNet on polyp segmentation benchmark datasets: Kvasir-SEG, CVC-
ClinicDB, and CVC-ColonDB. On Kvasir-SEG, MingleNet achieves 93.19% Dice,
87.24% loU, 94.15% precision, 92.25% recall, and 97.87% accuracy. On CVC-ClinicDB, el G S Eey § Eve el Dowie  Deeplel (UGS SRR
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MingleNet achieves 95.99% Dice, 92.29% loU, 96.08% precision, 95.90% recall, and \
99.21% accuracy. On CVC-ColonDB, MingleNet achieves 94.33% Dice, 89.28% loU, n ﬂ u u . u
95.89% precision, 92.83% recall, and 99.10% accuracy. Our proposed method f«i
demonstrated competitive performance across the Kvasir-SEG, CVC-ClinicDB, and CVC- E E E ﬁ ﬁ ﬁ
ColonDB datasets. On the CVVC-ClinicDB and CVVC-ColonDB benchmarks, MingleNet t

ranks 1st in Dice and loU. Moreover, MingleNet ranks 8th in Dice and 17th in loU on the

Kvasir-SEG benchmark.
CVC-ClinicDB dataset

Model Dice loU Precision Recall Accuracy
DoubleU-Net (Layer 1) 95.89% 92.11% 95.61% 96.17% 99.18%
DeepLabv3+ (Layer 1) 95.19% 90.83% 95.72% 94.67% 99.05%
Polyp Image Datasets et (Layer 2)
Ground Ground Ground DeepLab (Layer 2) 95.56% 91.51% 94.69% 96.46%0 99.11%
Image
Truth Truth MingleNet’s Final Output 95.99%  9229%  96.08%  9590%  99.21%
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CVC-ColonDB dataset
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Model Dice loU Precision Recall Accuracy
DoubleU-Net (Layer 1) 93.74% 88.21% 94.94% 92.56% 99.00%
DeepLabv3+ (Layer 1) 90.37%  82.44% 96.29%  85.14% 98.53%
U-Net (Layer 2) 93.60% 87.97% 95.88% 91.42% 98.99%
DeepLab (Layer 2) 93.91% 88.52% 94.74% 93.08% 99.02%
M 1N g I e N et A I'C h |teCtu e Dyn amic D ata MingleNet’s Final Output 94.33%  89.28%  95.89%  92.83%  99.10%
Red Green BI =
- g Augmentation :
i ¥ Original Red Green Blue Actual Double Deeplab U-Net DeeplLab MingleNet’s
:] - g
Ground Augmented AugmentEd Image Channel Channel Channel Mask U-Net V3+ (Layer2) (Layer2) Final Output

Image

Truth Ground Truth

Input Image with
RGB channels Image
y

Deeplabv3+ DoubleU-Net

| |

¢ | =
. [8

. A LA 11
- BN

DoubleU-Net Mask

Deeplabv3+ Mask

4N

Average Mask of
Layer 1 Models

MingleNet performance compared to other Deep Learning Models
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U-Net Mask u n DeeplLab Mask _ _ Model Dice loU Precision | Recall | Accuracy
MingleNet ranks 8th in U-Net (without our augmentation) ~ 83.59%  74.28%  86.45%  76.14%  93.94%
Dice (93.19%) and 17th in U-Net (with our augmentation) 86.73%  7657%  90.04%  83.65%  95.95%
0)
loU (8724 A)) on the « FCN-Transformer(pre-trained) 92.20% 85.54% 92.38% 92.03% 97.49%
Average Mask of Kvasir-SEG benchmark. OURS MingleNet 93.19%  87.24%  94.15% = 92.25%  97.87%
Layer 2 Models (with our augmentation)
MingleNet Output
: p *https://paperswithcode.com/sota/medical-image-segmentation-on-kvasir-seg
Mask1  Average Mask
Mask Output o o
CVC-ClinicDB Model Dice loU Precision Recall Accuracy
MingIeNet ranks 1st in U-Net (without our augmentation) 91.06%  81.51% 95.26% 87.22% 97.77%
X = oy oo both Dice (95.99%) and U-Net (with our augmentation) ~ 9142%  84.20%  9329%  89.63%  98.34%
Method |0l_J _(92-29%) on the CVC- FCN-Transformer(pre-trained) 88.00%  7858%  96.59%  80.82%  96.45%
. . . CIInICDB benChmark** OURS MingleNet 95.99% 92.29% 96.08% 95.90% 99.21%
MingleNet is a convolutional neural Generate new augmented images (with our augmentation)
network (CN N) architecture that fuses beforelm tl"ainign el Thgls **https://paperswithcode.com/sota/medical-image-segmentation-on-cve-clinicdb
the incorporation of multiple layers of tochni : d?h P d. P
. ccnnique IMmprove C Modadcl S
model as an InpUt' Afterwardv we generalizatiOn CVC-ColonDB Model Dice loU Precision Recall Accuracy
average the OUtpUt maSkS Of the MingleNet ranks 1st in U-Net (without our augmentation) 86.50% 76.2% 94.34% 79.94% 97.99%
second layer as the final output. both Dice (94.34%) and U-Net (with our augmentation) 82.12%  69.67%  92.12%  7409%  97.39%
loU (89_28%) on the CVC- FCN-Transformer(pre-trained) 90.73%  83.04% 91.07% 90.40% 98.99%
ColonDB benchmark.*** OURS MingleNet 0434%  89.28%  95.89%  92.84%  99.10%

(with our augmentation)

***https://paperswithcode.com/sota/medical-image-segmentation-on-cvc-colondb
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